A New Version for Simpler GMRES
نویسندگان
چکیده
GMRES is an iterative method that provides better solutions when dealing with larg linear systems of equations with unsymmetric coefficient matrix. By shifting the Arnoldi process to begin with Ar0 instead of r0, simpler GMRES implementation, proposed by Walker and Zhou in 1994, is obtained that in this method, an upper triangular problem is solved instead of hessenberg least square problem. This method is mathematically equivalent to the standard GMRES. In this paper, we apply weighted Arnoldi process on simpler GMRES to accelerate the convergence of this method. Numerical results show that this technique is applicable for simpler GMRES.
منابع مشابه
Theoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
متن کاملHow to Make Simpler GMRES and GCR More Stable
In this paper we analyze the numerical behavior of several minimum residual methods, which are mathematically equivalent to the GMRES method. Two main approaches are compared: the one that computes the approximate solution (similar to GMRES) in terms of a Krylov space basis from an upper triangular linear system for the coordinates, and the one where the approximate solutions are updated with a...
متن کاملWeighted Versions of Gl-fom and Gl-gmres for Solving General Coupled Linear Matrix Equations
More recently, Beik and Salkuyeh [F. P. A. Beik and D. K. Salkuyeh, On the global Krylov subspace methods for solving general coupled matrix equations, Computers and Mathematics with Applications, 62 (2011) 4605–4613] have presented the Gl-FOM and Gl-GMRES algorithms for solving the general coupled linear matrix equations. In this paper, two new algorithms called weighted Gl-FOM (WGl-FOM) and w...
متن کاملThe Rate of Convergence of GMRES on a Tridiagonal Toeplitz Linear System. II
This paper continues the recent work of the authors’ (Numer. Math., to appear) on the rate of convergence of GMRES for a tridiagonal Toeplitz linear system Ax = b. Much simpler formulas than the earlier ones for GMRES residuals when b is the first or the last column of the identity matrix are established, and these formulas allow us to confirm the rate of convergence that was conjectured but on...
متن کاملGMRES with Deflated Restarting
A modification is given of the GMRES iterative method for nonsymmetric systems of linear equations. The new method deflates eigenvalues using Wu and Simon’s thick restarting approach. It has the efficiency of implicit restarting, but is simpler and does not have the same numerical concerns. The deflation of small eigenvalues can greatly improve the convergence of restarted GMRES. Also, it is de...
متن کامل